Agricultural Waste-Based Activated Carbon for Oily Wastewater Treatment by Adsorption: A Review

Authors

  • Safaa T. Al Asadi Department of Basic Science, College of Nursing, University of Kerbala
  • Fouad F. Al-Qaim Department of Chemistry, College of Science for Women, University of Babylon

DOI:

https://doi.org/10.52716/jprs.v15i2.985

Abstract

Oily wastewater poses great risks to the ecosystem, human health and living organisms. Therefore, the development and study of sorbents using various activation techniques to remove oils from water resources is of interest to the scientific community. Here, we present a review on the use of sorbents made from agricultural waste to remove oils and hydrocarbons from aqueous media. After modification, it was found that activated carbon made from agricultural waste improves the performance of the adsorption process. The presentation also includes a comprehensive analysis of the application of isothermal models, kinetic models and thermodynamic parameters. The selectivity of the sorbent is the main focus of the adsorption kinetics and isothermal models. The process of adsorption and other parameters affecting adsorption such as contact time, solution temperature, solution pH and amount of sorbent are also studied. The use of agricultural waste as sorbents is economically and environmentally beneficial for the removal of oily pollutants.

References

A. Hamta, M. R. Dehghani, and M. Gholami, “Novel experimental data on aqueous two–phase system containing PEG–6000 and Na 2 CO 3 at T = (293.15, 303.15 and 313.15) K”, Journal of Molecular Liquids, vol. 241, pp. 144–149, Sep. 2017. https://doi.org/10.1016/j.molliq.2017.05.149.

A. Hamta and M. R. Dehghani, “Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals”, Journal of Molecular Liquids, vol. 231, pp. 20–24, Apr. 2017. https://doi.org/10.1016/j.molliq.2017.01.084.

B. S. Burievich and Y. L. Tolibovich, “Biological Treatment of Wastewater from Production Enterprises”, International Journal of Biology, vol. 12, no. 3, p. 14, May 2020. https://doi.org/10.5539/ijb. v12n3p14.

A. E. Jery, K. M. Khedher, H. M. Salman, N. Al-Ansari, S. Sh. Sammen, and M. Scholz, “Thermodynamic and structural investigation of oily wastewater treatment using peach kernel and walnut shell based activated carbon”, PloS One, vol. 19, no. 5, p. e0297024, May 2024. https://doi.org/10.1371/journal.pone.0297024.

A. Hamta, A. Mohammadi, M. R. Dehghani, and F. Feyzi, “Liquid–Liquid equilibrium and thermodynamic modeling of aqueous Two-Phase system containing polypropylene glycol and NACLO4 at T = (288.15 and 298.15) k”, Journal of Solution Chemistry, vol. 47, no. 1, pp. 1–25, Dec. 2017. https://doi.org/10.1007/s10953-017-0704-x .

A. Hamta, F. Z. Ashtiani, M. Karimi, Y. Sadeghi, S. MoayedFard, and S. Ghorabi, “Copolymer membrane fabrication for highly efficient Oil‐in‐Water emulsion separation”, Chemical Engineering & Technology, vol. 44, no. 7, pp. 1321–1326, Jun. 2021. https://doi.org/10.1002/ceat.202000610.

S. A. Socolofsky, J. Gros, E. North, M. C. Boufadel, T. F. Parkerton, and E. E. Adams, “The treatment of biodegradation in models of sub-surface oil spills: A review and sensitivity study”, Marine Pollution Bulletin, vol. 143, pp. 204–219, Jun. 2019. https://doi.org/10.1016/j.marpolbul.2019.04.018.

O. G. Brakstad, A. Lewis, and C. J. Beegle-Krause, “A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill”, Marine Pollution Bulletin, vol. 135, pp. 346–356, Oct. 2018. https://doi.org/10.1016/j.marpolbul.2018.07.028.

A. Hamta, F. Z. Ashtiani, M. Karimi, and A. Safikhani, “Manipulating of polyacrylonitrile membrane porosity via SiO2 and TiO2 nanoparticles: Thermodynamic and experimental point of view”, Polymers for Advanced Technologies, vol. 32, no. 2, pp. 872–885, Nov. 2020. https://doi.org/10.1002/pat.5138.

M. A. Aslam et al., “Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance”, Applied Surface Science, vol. 543, p. 148785, Mar. 2021. https://doi.org/10.1016/j.apsusc.2020.148785.

A. Hamta, F. Z. Ashtiani, M. Karimi, and S. Moayedfard, “Asymmetric block copolymer membrane fabrication mechanism through self-assembly and non-solvent induced phase separation (SNIPS) process”, Scientific Reports, vol. 12, no. 1, Jan. 2022. https://doi.org/10.1038/s41598-021-04759-7.

K. M. Musa, S. A. Rushdi, and K. Hameed, “Synthesis of Activated Carbon of Lote Wood and Study its Physical Properties”, Journal of Physics. Conference Series, vol. 1362, no. 1, p. 012117, Nov. 2019. https://doi.org/10.1088/1742-6596/1362/1/012117.

L. Xinjie, Z. Shihong, W. Xincheng, S. Jinai, Z. Xiong, W. Xianhua, Y. Haiping, and C. Hanping, “Co-combustion of wheat straw and camphor wood with coal slime: Thermal behaviour, kinetics, and gaseous pollutant emission characteristics”, Energy, vol. 234, p. 121292, Nov. 2021. https://doi.org/10.1016/j.energy.2021.121292.

D. Choi, H.-S. Kil, and S. Lee, “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies”, Carbon, vol. 142, pp. 610–649, Feb. 2019. https://doi.org/10.1016/j.carbon.2018.10.028.

W. Cai, X. Zhang, J. Shi, J. Li, Z. Liu, S. Zhou, X. Jia, J. Xiong, K. Qu, and Y. Huang, “Contribution of carbon support in cost-effective metal oxide/carbon composite catalysts for the alkaline oxygen evolution reaction”, Catalysis Communications, vol. 127, pp. 5–9, Jul. 2019. https://doi.org/10.1016/j.catcom.2019.04.016.

H. Zhang, J. Niu, Y. Guo, and F. Cheng, “Recirculating coking by-products and waste for cost-effective activated carbon (AC) production and its application for treatment of SO2 and wastewater in coke-making plant”, Journal of Cleaner Production, vol. 280, p. 124375, Jan. 2021. https://doi.org/10.1016/j.jclepro.2020.124375.

Z. Asadi-Sangachini, M. M. Galangash, H. Younesi, and M. Nowrouzi, “The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large-scale CO2 capture”, Environmental Science and Pollution Research International, vol. 26, no. 26, pp. 26542–26552, Jul. 2019. https://doi.org/10.1007/s11356-019-05842-3.

P. Manasa, Z. J. Lei, and F. Ran, “Biomass Waste Derived Low Cost Activated Carbon from Carchorus Olitorius (Jute Fiber) as Sustainable and Novel Electrode Material”, Journal of Energy Storage, vol. 30, p. 101494, Aug. 2020. https://doi.org/10.1016/j.est.2020.101494.

D. Pal and S. Sen, “In-Depth coverage of petroleum waste sources, characteristics, environmental impact, and sustainable remediation process”, in Environmental science and engineering, pp. 1–38, 2023. https://doi.org/10.1007/978-3-031-48220-5_1.

J. Pichtel, “Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention”, Applied and Environmental Soil Science, vol. 2016, pp. 1–24, Jan. 2016. https://doi.org/10.1155/2016/2707989.

H. P. Bacosa et al., “From Surface Water to the Deep Sea: A review on factors affecting the biodegradation of spilled oil in marine environment”, Journal of Marine Science and Engineering, vol. 10, no. 3, p. 426, Mar. 2022. https://doi.org/10.3390/jmse10030426.

T. Bakke, J. Klungsøyr, and S. Sanni, “Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry”, Marine Environmental Research, vol. 92, pp. 154–169, Dec. 2013. https://doi.org/10.1016/j.marenvres.2013.09.012.

P. Babuji, S. Thirumalaisamy, K. Duraisamy, and G. Periyasamy, “Human Health Risks due to Exposure to Water Pollution: A Review”, Water, vol. 15, no. 14, p. 2532, Jul. 2023. https://doi.org/10.3390/w15142532.

N. Andrews, N. J. Bennett, P. Le Billon, S. J. Green, A. M. Cisneros-Montemayor, S. Amongin, N. J. Gray, and U. R. Sumaila, “Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance”, Energy Research & Social Science, vol. 75, p. 102009, May 2021. https://doi.org/10.1016/j.erss.2021.102009.

F. C. P. R. E. Silva, N. M. P. R. E. Silva, J. M. Luna, R. D. Rufino, V. A. Santos, and L. A. Sarubbo, “Dissolved air flotation combined to biosurfactants: a clean and efficient alternative to treat industrial oily water”, Reviews in Environmental Science and Bio-technology/Reviews in Environmental Science and Bio/Technology, vol. 17, no. 4, pp. 591–602, Sep. 2018. https://doi.org/10.1007/s11157-018-9477-y.

M. Li, L. Deng, Y. Tan, K. Qi, X. Tian, J. Yu, C. Qin, and S. Cheng, “Superhydrophobic/Superoleophilic Polyacrylonitrile/AG aerogels for the high efficient Oil/Water separation and sensitive detection of Low‐Concentration oily Sudan dyes”, Advanced Materials Interfaces, vol. 8, no. 9, Mar. 2021. https://doi.org/10.1002/admi.202002174.

N. M. Zadymova, Z. N. Skvortsova, V. Yu. Traskine, F. A. Kulikov-Kostyushko, V. G. Kulichikhin, and A. Ya. Malkin, “Rheological properties of heavy oil emulsions with different morphologies”, Journal of Petroleum Science & Engineering, vol. 149, pp. 522–530, Jan. 2017. https://doi.org/10.1016/j.petrol.2016.10.063.

G. Chen and G. He, “Separation of water and oil from water-in-oil emulsion by freeze/thaw method”, Separation and Purification Technology, vol. 31, no. 1, pp. 83–89, Apr. 2003. https://doi.org/10.1016/S1383-5866(02)00156-9.

J. Wen, J. Zhang, Z. Wang, and Y. Zhang, “Correlations between emulsification behaviors of crude oil-water systems and crude oil compositions”, Journal of Petroleum Science & Engineering, vol. 146, pp. 1–9, Oct. 2016. https://doi.org/10.1016/j.petrol.2016.04.010.

F. Luo, L. He, and N. He, “Simulation and experimental study of working characteristics of an improved bioreactor for degrading oily sludge”, Process Safety and Environmental Protection, vol. 147, pp. 1201–1208, Mar. 2021. https://doi.org/10.1016/j.psep.2021.01.047.

A. Srinivasan and T. Viraraghavan, “Oil removal from water using biomaterials”, Bioresource Technology, vol. 101, no. 17, pp. 6594–6600, Sep. 2010. https://doi.org/10.1016/j.biortech.2010.03.079.

A. D. M. De Medeiros, C. J. G. Da Silva Junior, J. D. P. De Amorim, I. J. B. Durval, A. F. De Santana Costa, and L. A. Sarubbo, “Oily wastewater treatment: methods, challenges, and trends”, Processes, vol. 10, no. 4, p. 743, Apr. 2022. https://doi.org/10.3390/pr10040743.

J. S. Lim, S. F. Wong, M. C. Law, Y. Samyudia, and S. S. Dol, “A review on the effects of emulsions on flow behaviours and common factors affecting the stability of emulsions”, Journal of Applied Sciences, vol. 15, no. 2, pp. 167–172, Jan. 2015. https://doi.org/10.3923/jas.2015.167.172.

B. A. Khan, N. Akhtar, H. M. S. Khan, K. Waseem, T. Mahmood, A. Rasul, M. Iqbal, and H. Khan, “Basics of pharmaceutical emulsions: A review”, African Journal of Pharmacy and Pharmacology, vol. 5, no. 25, Dec. 2011. https://doi.org/10.5897/ajpp11.698.

H. Esmaeili, F. Esmaeilzadeh, and D. Mowla, “Effect of salinity, pH, and temperature on stability of gas condensate in water emulsions using different surfactants”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), vol. 38, no. 3, pp. 151-166, 2019. https://doi.org/10.30492/ijcce.2019.31061

S. Maaref and S. Ayatollahi, “The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: A case study”, Journal of Dispersion Science and Technology, vol. 39, no. 5, pp. 721–733, Dec. 2017. https://doi.org/10.1080/01932691.2017.1386569.

E. D. Ngouémazong, S. Christiaens, A. Shpigelman, A. Van Loey, and M. Hendrickx, “The Emulsifying and Emulsion‐Stabilizing Properties of Pectin: A review”, Comprehensive Reviews in Food Science and Food Safety, vol. 14, no. 6, pp. 705–718, Sep. 2015. https://doi.org/10.1111/1541-4337.12160.

A. M. Elsharkawy, T. A. Al-Sahhaf, and M. A. Fahim, “Further Investigation into the Stability of Water-in-Crude Oil Emulsions Formed in Burgan Oilfield: Effect of Toluene, Resins to Asphaltenes Ratio, and Surfactant”, Journal of Dispersion Science and Technology, vol. 33, no. 6, pp. 805–811, Jun. 2012. https://doi.org/10.1080/01932691.2011.584797.

M. Sulyman, M. Sienkiewicz, J. Haponiuk and S. Zalewski, “New approach for adsorptive removal of oil in wastewater using textile fibers as alternative adsorbent”, Acta Scientific Agriculture, vol. 2, no. 6, pp. 1-6, 2018.

K. Okiel, M. El-Sayed, and M. Y. El-Kady, “Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon”, Egyptian Journal of Petroleum/Egyptian Journal of Petroleum, vol. 20, no. 2, pp. 9–15, Jun. 2011. https://doi.org/10.1016/j.ejpe.2011.06.002.

S. Syed, M. I. Alhazzaa, and M. Asif, “Treatment of oily water using hydrophobic nano-silica”, Chemical Engineering Journal, vol. 167, no. 1, pp. 99–103, Feb. 2011. https://doi.org/10.1016/j.cej.2010.12.006.

Y. H. Teow, P. M. I. Nordin, N. Izzah A. Juanda, M. A. M. Shafi, and P. Krishnan, “A review on adsorption process for the treatment of oily wastewater”, Advances in Environmental and Engineering Research, vol. 04, no. 01, pp. 1–30, Feb. 2023. https://doi.org/10.21926/aeer.2301016.

S. D. Salman, I. M. Rasheed, and M. M. Ismaeel, “Removal of diclofenac from aqueous solution on apricot seeds activated carbon synthesized by pyro carbonic acid microwave”, Chemical Data Collections, vol. 43, p. 100982, Feb. 2023. https://doi.org/10.1016/j.cdc.2022.100982.

S. D. Salman, I. M. Rasheed, and A. K. Mohammed, “Adsorption of heavy metal ions using activated carbon derived from Eichhornia (water hyacinth)”, IOP Conference Series. Earth and Environmental Science, vol. 779, no. 1, p. 012074, Jun. 2021. https://doi.org/10.1088/1755-1315/779/1/012074.

N. M. Jabbar, S. D. Salman, I. M. Rashid, and Y. S. Mahdi, “Removal of an anionic Eosin dye from aqueous solution using modified activated carbon prepared from date palm fronds”, Chemical Data Collections, vol. 42, p. 100965, Dec. 2022. https://doi.org/10.1016/j.cdc.2022.100965.

M. Yousefi, S. M. Arami, H. Takallo, M. Hosseini, M. Radfard, H. Soleimani, and A. A. Mohammadi, “Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: Kinetic and isotherm studies”, Human and Ecological Risk Assessment, vol. 25, no. 6, pp. 1508–1520, May 2018. https://doi.org/10.1080/10807039.2018.1469968.

N. Morin-Crini, S. Loiacono, V. Placet, G. Torri, C. Bradu, M. Kostić, C. Cosentino, G. Chanet, B. Martel, E. Lichtfouse, and G. Crini “Hemp-based adsorbents for sequestration of metals: a review”, Environmental Chemistry Letters, vol. 17, no. 1, pp. 393–408, Sep. 2018. https://doi.org/10.1007/s10311-018-0812-x.

A. AboBakr, L. A. Said, A. H. Madian, A. S. Elwakil, and A. G. Radwan, “Experimental comparison of integer/fractional-order electrical models of plant”, AEÜ. International Journal of Electronics and Communications, vol. 80, pp. 1–9, Oct. 2017. https://doi.org/10.1016/j.aeue.2017.06.010.

G. Jolly, L. Dupont, M. Aplincourt, and J. Lambert, “Improved Cu and Zn sorption on oxidized wheat lignocellulose”, Environmental Chemistry Letters, vol. 4, no. 4, pp. 219–223, May 2006. https://doi.org/10.1007/s10311-006-0051-4.

S. Husien, R. M. El-Taweel, A. I. Salim, I. S. Fahim, L. A. Said, and A. G. Radwan, “Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling”, Current Research in Green and Sustainable Chemistry, vol. 5, p. 100325, Jan. 2022. https://doi.org/10.1016/j.crgsc.2022.100325.

R. K. Mishra, B. Singh, and B. Acharya, “A comprehensive review on activated carbon from pyrolysis of lignocellulosic biomass: An application for energy and the environment”, Carbon Resources Conversion, vol. 7, no. 4, p. 100228, Dec. 2024. https://doi.org/10.1016/j.crcon.2024.100228.

M. A. Yahya et al., “A brief review on activated carbon derived from agriculture by-product”, AIP Conference Proceedings, Jan. 2018. https://doi.org/10.1063/1.5041244.

M. M. S. Ali, N. El- Sai, and B. S. Girgis, “Evaluation and modeling of high surface area activated carbon from date frond and application on some pollutants”, International Journal of Computational Engineering Research, vol. 4, no. 1, pp. 70-78, 2014.

R. T. Ayinla, J. O. Dennis, H. M. Zaid, Y. K. Sanusi, F. Usman, and L. L. Adebayo, “A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage”, Journal of Cleaner Production, vol. 229, pp. 1427–1442, Aug. 2019. https://doi.org/10.1016/j.jclepro.2019.04.116.

M. Sevilla and R. Mokaya, “Energy storage applications of activated carbons: supercapacitors and hydrogen storage”, Energy & Environmental Science, vol. 7, no. 4, pp. 1250–1280, Jan. 2014. https://doi.org/10.1039/C3EE43525C.

R. K. Mishra, M. Misra, and A. K. Mohanty, “Value-Added Bio-carbon Production through the Slow Pyrolysis of Waste Bio-oil: Fundamental Studies on Their Structure–Property–Processing Co-relation”, ACS Omega, vol. 7, no. 2, pp. 1612–1627, Jan. 2022. https://doi.org/10.1021/acsomega.1c01743.

O. Ioannidou and A. Zabaniotou, “Agricultural residues as precursors for activated carbon production—A review”, Renewable & Sustainable Energy Reviews, vol. 11, no. 9, pp. 1966–2005, Dec. 2007. https://doi.org/10.1016/j.rser.2006.03.013.

S. Nizamuddin, S. Shrestha, S. Athar, B. S. Ali, and M. A. Siddiqui, “A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production”, Reviews in Chemical Engineering, vol. 32, no. 5, pp. 489–505, Apr. 2016. https://doi.org/10.1515/revce-2015-0062.

B. Sajjadi, W.-Y. Chen, and N. O. Egiebor, “A comprehensive review on physical activation of biochar for energy and environmental applications”, Reviews in Chemical Engineering, vol. 35, no. 6, pp. 735–776, Jul. 2019. https://doi.org/10.1515/revce-2017-0113.

S. Rezma, I. B. Assaker, Y. Litaiem, R. Chtourou, A. Hafiane, and H. Deleuze, “Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application”, Materials Research Bulletin, vol. 111, pp. 222–229, Mar. 2019. https://doi.org/10.1016/j.materresbull.2018.11.030.

Y.-J. Zhang, Z.-J. Xing, Z.-K. Duan, N. M. Li, and Y. Wang, “Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste”, Applied Surface Science, vol. 315, pp. 279–286, Oct. 2014. https://doi.org/10.1016/j.apsusc.2014.07.126.

T. S. Hui and M. A. A. Zaini, “Potassium hydroxide activation of activated carbon: a commentary”, Carbon Letters, vol. 16, no. 4, pp. 275–280, Oct. 2015. https://doi.org/10.5714/cl.2015.16.4.275.

J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam”, Biomass & Bioenergy, vol. 115, pp. 64–73, Aug. 2018. https://doi.org/10.1016/j.biombioe.2018.04.015.

Z. Z. Chowdhury, “Preparation, characterization and adsorption studies of heavy metals onto activated adsorbent materials derived from agricultural residues”, University of Malaya (Malaysia) ProQuest Dissertations & Theses, 2013.

M. Danish and T. Ahmad, “A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application”, Renewable & Sustainable Energy Reviews, vol. 87, pp. 1–21, May 2018. https://doi.org/10.1016/j.rser.2018.02.003.

M. K. Afdhol, F. Haris, R. A. Amiliana, A. Hanafi, and I. T. Ramadhan, “Production of Activated Carbon from Coffee Grounds Using Chemical and Physical Activation Method”, Advanced Science Letters, vol. 23, no. 6, pp. 5751–5755, Jun. 2017. https://doi.org/10.1166/asl.2017.8822.

N. S. Sulaiman, R. Hashim, M. H. M. Amini, M. Danish, and O. Sulaiman, “Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield”, Journal of Cleaner Production, vol. 198, pp. 1422–1430, Oct. 2018. https://doi.org/10.1016/j.jclepro.2018.07.061.

A. Nasrullah, A. H. Bhat, A. Naeem, M. H. Isa, and M. Danish, “High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue”, International Journal of Biological Macromolecules, vol. 107, pp. 1792–1799, Feb. 2018. https://doi.org/10.1016/j.ijbiomac.2017.10.045.

E. Köseoğlu and C. Akmil-Başar, “Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass”, Advanced Powder Technology, vol. 26, no. 3, pp. 811–818, May 2015. https://doi.org/10.1016/j.apt.2015.02.006.

A. T. Hoang, S. Kumar, E. Lichtfouse, C. K. Cheng, R. S. Varma, N. Senthilkumar, P. Q. P. Nguyen, and X. P. Nguyen, “Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends”, Chemosphere, vol. 302, p. 134825, Sep. 2022. https://doi.org/10.1016/j.chemosphere.2022.134825.

A. F. Abbas and M. J. Ahmed, “Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K 2 CO 3 pyrolysis”, Journal of Water Process Engineering, vol. 9, pp. 201–207, Feb. 2016. https://doi.org/10.1016/j.jwpe.2016.01.004.

P. S. Thue, M. A. Adebayo, E. C. Lima, J. M. Sieliechi, F. M. Machado, G. L. Dotto, J. C. P. Vaghetti, and S. L. P. Dias, “Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution”, Journal of Molecular Liquids, vol. 223, pp. 1067–1080, Nov. 2016. https://doi.org/10.1016/j.molliq.2016.09.032.

J. Kazmierczak-Razna, B. Gralak-Podemska, P. Nowicki, and R. Pietrzak, “The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S”, Chemical Engineering Journal, vol. 269, pp. 352–358, Jun. 2015. https://doi.org/10.1016/j.cej.2015.01.057.

J. Georgin, G. L. Dotto, M. A. Mazutti, and E. L. Foletto, “Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions”, Journal of Environmental Chemical Engineering, vol. 4, no. 1, pp. 266–275, Mar. 2016. https://doi.org/10.1016/j.jece.2015.11.018.

G. Wang, Y. Dai, H. Yang, Q. Xiong, K. Wang, J. Zhou, Y. Li, and S. Wang, “A review of recent advances in biomass pyrolysis”, Energy & Fuels, vol. 34, no. 12, pp. 15557–15578, Nov. 2020. https://doi.org/10.1021/acs.energyfuels.0c03107.

E. A. Taki and S. D. Salman, “Removal of Diesel Oil from Aqueous Solution Using Agro-Waste Activated Carbon Synthesized by Chemical and Microwave Activation”, Journal of Ecological Engineering, vol. 25, no. 5, pp. 10–28, May 2024. https://doi.org/10.12911/22998993/185321.

R. Remmani, R. Makhloufi, M. Miladi, A. Ouakouak, A. Canales, and D. Núñez-Gómez, “Development of Low-Cost Activated Carbon towards an Eco-Efficient Removal of Organic Pollutants from Oily Wastewater”, Polish Journal of Environmental Studies, vol. 30, no. 2, pp. 1801–1808, Feb. 2021. https://doi.org/10.15244/pjoes/125765.

U. A. Abel, G. R. Habor and O. I. Oseribho, “Adsorption studies of oil spill clean-up using coconut coir activated carbon (CCAC)”, American Journal of Chemical Engineering, vol. 8, no. 2, pp. 36- 47, 2020. https://doi.org/10.11648/j.ajche.20200802.11

T. H. Ibrahim, A. S. Gulistan, M. I. Khamis, H. Ahmed, and A. Aidan, “Produced water treatment using naturally abundant pomegranate peel”, Desalination and Water Treatment, vol. 57, no. 15, pp. 6693–6701, Feb. 2015. https://doi.org/10.1080/19443994.2015.1010235.

S. Tamjidi, H. Esmaeili, and B. K. Moghadas, “Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study”, Materials Research Express, vol. 6, no. 10, p. 102004, Sep. 2019. https://doi.org/10.1088/2053-1591/ab3ffb.

T. Zhang, X. Wu, X. Fan, D. C. W. Tsang, G. Li, and Y. Shen, “Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment”, Journal of Environmental Management, vol. 236, pp. 108–117, Apr. 2019. https://doi.org/10.1016/j.jenvman.2019.01.018.

W. E. Ndifreke and N. P. Aydinlik, “KOH modifiedThevetia peruvianashell activated carbon for sorption of dimethoate from aqueous solution”, Journal of Environmental Science and Health. Part B, vol. 54, no. 1, pp. 1–13, Oct. 2018. https://doi.org/10.1080/03601234.2018.1501143.

S. Wang and Z. Zhu, “Effects of acidic treatment of activated carbons on dye adsorption”, Dyes and Pigments, vol. 75, no. 2, pp. 306–314, Jan. 2007. https://doi.org/10.1016/j.dyepig.2006.06.005.

S. Senthilkumaar, P. Kalaamani, K. Porkodi, P. R. Varadarajan, and C. V. Subburaam, “Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste”, Bioresource Technology, vol. 97, no. 14, pp. 1618–1625, Sep. 2006. https://doi.org/10.1016/j.biortech.2005.08.001.

M. M. Boushehrian, H. Esmaeili, and R. Foroutan, “Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media”, Journal of Environmental Chemical Engineering, vol. 8, no. 4, p. 103869, Aug. 2020. https://doi.org/10.1016/j.jece.2020.103869.

J. M. Salman, V. O. Njoku, and B. H. Hameed, “Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium”, Chemical Engineering Journal, vol. 173, no. 2, pp. 361–368, Sep. 2011. https://doi.org/10.1016/j.cej.2011.07.066.

C. Djilani, R. Zaghdoudi, A. Modarressi, M. Rogalski, F. Djazi, and A. Lallam, “Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste”, Chemical Engineering Journal, vol. 189–190, pp. 203–212, May 2012. https://doi.org/10.1016/j.cej.2012.02.059.

S. D. Salman and I. M. Rashid, “Production and characterization of composite activated carbon from potato peel waste for cyanide removal from aqueous solution”, Environmental Progress & Sustainable Energy, vol. 43, no. 1, Sep. 2023. https://doi.org/10.1002/ep.14260.

P. F. Zhong, H. M Lin, L. W. Wang, Z. Y. Mo, X. J. Meng, H. T. Tang, and Y. M. Pan, “Electrochemically enabled synthesis of sulfide imidazopyridines via a radical cyclization cascade”, Green Chemistry, vol. 22, no. 19, pp. 6334–6339, Jan. 2020. https://doi.org/10.1039/D0GC02125C.

Z. Wei, W. Chen, Z. Wang, N. Li, P. Zhang, M. Zhang, L. Zhao, and Q. Qiang, “High‐temperature persistent luminescence and visual dual‐emitting optical temperature sensing in self‐activated CaNb2O6: Tb3+ phosphor”, Journal of the American Ceramic Society, vol. 104, no. 4, pp. 1750–1759, Dec. 2020. https://doi.org/10.1111/jace.17579.

A. L. Ahmad, S. Bhatia, N. Ibrahim, and S. Sumathi, “Adsorption of residual oil from palm oil mill effluent using rubber powder”, Brazilian Journal of Chemical Engineering, vol. 22, no. 3, pp. 371–379, Sep. 2005. https://doi.org/10.1590/S0104-66322005000300006 .

B. Zhang, Z. Dong, D. Sun, T. Wu, and Y. Li, “Enhanced adsorption capacity of dyes by surfactant-modified layered double hydroxides from aqueous solution”, Journal of Industrial and Engineering Chemistry, vol. 49, pp. 208–218, May 2017. https://doi.org/10.1016/j.jiec.2017.01.029.

A. Bazzo, M. A. Adebayo, S. L. P. Dias, E. C. Lima, J. C. P. Vaghetti, E. R. de Oliveira, A. J. B. Leite, and F. A. Pavan “Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions”, Desalination and Water Treatment, vol. 57, no. 34, pp. 15873–15888, Jul. 2015. https://doi.org/10.1080/19443994.2015.1074621.

S. Sharma, A. Kumar, C. W. Lai, M. Naushad, Shehnaz, J. Iqbal, and F. J. Stadler, “Activated carbon as superadsorbent and sustainable material for diverse applications”, Adsorption Science & Technology, vol. 2022, pp. 1–21, Mar. 2022. https://doi.org/10.1155/2022/4184809.

S. Deshmukh, P. V. Thorat, and N. S. Topare, “Preparation and characterization of activated carbon from orange peels”, Journal of Catalyst and Catalysis, vol. 5, n. 1, pp. 15 - 20, 2018.

M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review”, Journal of Hazardous Materials, vol. 393, p. 122383, Jul. 2020. https://doi.org/10.1016/j.jhazmat.2020.122383.

M. B. Desta, “Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste”, Journal of Thermodynamics, vol. 2013, pp. 1–6, Sep. 2013. https://doi.org/10.1155/2013/375830.

A. E. Rodrigues and C. M. Silva, “What’s wrong with Lagergreen pseudo first order model for adsorption kinetics?”, Chemical Engineering Journal, vol. 306, pp. 1138–1142, Dec. 2016. https://doi.org/10.1016/j.cej.2016.08.055.

P. Naderi, M. Shirani, A. Semnani, and A. Goli, “Efficient removal of crystal violet from aqueous solutions with Centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: Kinetic, isotherm and thermodynamic studies”, Ecotoxicology and Environmental Safety, vol. 163, pp. 372–381, Nov. 2018. https://doi.org/10.1016/j.ecoenv.2018.07.091.

S. Wong, H. H. Tumari, N. Ngadi, N. B. Mohamed, O. Hassan, R. Mat, and N. A. S. Amin, “Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL)”, Journal of Cleaner Production, vol. 206, pp. 394–406, Jan. 2019. https://doi.org/10.1016/j.jclepro.2018.09.201.

X. Kan, Z. Yao, J. Zhang, Y. W. Tong, W. Yang, Y. Dai, and C. H. Wang, “Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment”, Bioresource Technology, vol. 228, pp. 77–88, Mar. 2017. https://doi.org/10.1016/j.biortech.2016.12.064.

J. Ooi, L. Y. Lee, B. Y. Z. Hiew, S. Thangalazhy-Gopakumar, S. S. Lim, and S. Gan, “Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies”, Bioresource Technology, vol. 245, pp. 656–664, Dec. 2017. https://doi.org/10.1016/j.biortech.2017.08.153.

A. H. Jawad, S. H. Mallah, and M. S. Mastuli, “Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf”, Desalination and Water Treatment, vol. 124, pp. 297–307, Jan. 2018. https://doi.org/10.5004/dwt.2018.22915.

H. V. Tran, L. T. Hoang, and C. D. Huynh, “An investigation on kinetic and thermodynamic parameters of methylene blue adsorption onto graphene-based nanocomposite”, Chemical Physics, vol. 535, p. 110793, Jul. 2020. https://doi.org/10.1016/j.chemphys.2020.110793.

M. Mondal, R. Mukherjee, A. Sinha, S. Sarkar, and S. De, “Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry”, Journal of Water Process Engineering, vol. 28, pp. 135–143, Apr. 2019. https://doi.org/10.1016/j.jwpe.2019.01.013.

B. H. Hameed, R. R. Krishni, and S. A. Sata, “A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions”, Journal of Hazardous Materials, vol. 162, no. 1, pp. 305–311, Feb. 2009. https://doi.org/10.1016/j.jhazmat.2008.05.036.

K. P. Gopinath, D.-V. N. Vo, D. G. Prakash, A. A. Joseph, S. Viswanathan, and J. Arun, “Environmental applications of carbon-based materials: a review”, Environmental Chemistry Letters, vol. 19, no. 1, pp. 557–582, Sep. 2020. https://doi.org/10.1007/s10311-020-01084-9.

H. Khatoon, and J. P. N. Rai, “Agricultural waste materials as biosorbents for the removal of heavy metals and synthetic dyes-a review”, Octa Journal of Environmental Research, vol. 4, no. 3, pp. 208 - 229, 2016.

M. Auta and B. H. Hameed, “Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye”, Chemical Engineering Journal, vol. 171, no. 2, pp. 502–509, Jul. 2011, https://doi.org/10.1016/j.cej.2011.04.017.

P. D. Húmpola, H. S. Odetti, A. E. Fertitta, and J. L. Vicente, “Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons”, Journal of the Chilean Chemical Society, vol. 58, no. 1, pp. 1541–1544, Mar. 2013. http://dx.doi.org/10.4067/S0717-97072013000100009.

S. Sd. Elanchezhiyan, S. M. Prabhu, and S. Meenakshi, “Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal”, International Journal of Biological Macromolecules, vol. 112, pp. 294–305, Jun. 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.118.

Downloads

Published

2025-06-22

How to Cite

(1)
Al Asadi, S. T. .; Al-Qaim, F. F. . Agricultural Waste-Based Activated Carbon for Oily Wastewater Treatment by Adsorption: A Review. Journal of Petroleum Research and Studies 2025, 15, 165-194.